159 research outputs found

    Experimental and numerical investigation of interface damage in composite L-angle sections under four-point bending

    Get PDF
    Š The Author(s) 2020. Curved laminates in aero-structures, such as the L-angle sections where webs and flanges meet, are prone to delamination due to high interlaminar stresses in these regions. Some efforts to investigate delamination in these structures can be found in the literature but commonly structures are limited to unidirectional layups or modelling approaches are constrained to the cohesive element based methods. In this work, multi-directional L-angle laminates were manufactured using unidirectional prepregs and tested under four-point bending load conditions to examine the interface damage. Acoustic emission technique was used to assist the capture of damage initiation and propagation. Three interface modelling strategies for predicting delamination, namely cohesive element, cohesive surface and perfectly bonded interface were used in the numerical study. The interface damage behaviour was successfully predicted by the simulation methods and differences among the strategies were compared

    On the synthesis and performance of hierarchical nanoporous TS-1 catalysts

    Get PDF
    Hierarchical TS-1 zeolite was successfully prepared using chitosan as a sacrificial template. The X-ray diffraction showed that the presence of chitosan with the synthesis precursor had no deleterious effect on the crystallinity and phase purity of this zeolite. X-ray absorption spectroscopy at the Ti K-edge, FTIR and Raman spectroscopies revealed the titanium ions in the zeolite structure have predominantly tetrahedral coordination. However, it appears that the higher chitosan content in the synthesis gel imparted some hydrophilic character to the TS-1 system. Furthermore, the technique adopted for the preparation of the synthesis gel – e.g partially dried or fully dried – appears to affect the amount of framework titanium in the zeolite structure. The calcined form of the chitosan templated TS-1 zeolites exhibited higher cyclohexene conversion compared to the TS-1 material synthesised without this template, but these catalysts showed lower selectivity for cyclohexene epoxide

    An efficient multiscale surrogate modelling framework for composite materials considering progressive damage based on artificial neural networks

    Get PDF
    Š 2020 Elsevier Ltd Modelling of the progressive damage behaviour of large-scale composite structures presents a significant challenge in terms of computational cost. This is due to the detailed description in finite element (FE) models for the materials, i.e., with each unidirectional layer defined as required by the applicability of laminate failure criteria, and numerous iterations required to capture the highly nonlinear behaviour after damage initiation. In this work, we propose a method to accelerate the nonlinear FE analysis by using a pre-computed surrogate model which acts as a general material database representing the nonlinear effective stress-strain relationship and the possible failure information. Developed using artificial neural network algorithms, the framework is separated into an offline training phase and an online application phase. The surrogate model is first trained with a vast number of sampling data obtained from mesoscale unit cell models offline, and then used for online predictions on a macroscale FE model. The prediction accuracy of the surrogate model was examined by comparing the results with conventional FE modelling and good agreement was observed. The presented method enables progressive damage analysis of composite structures with significant savings of the online computational cost. Lastly, the surrogate model is only based on material designs and is reusable for other structures with the same material

    Deciphering the role of QPCTL in glioma progression and cancer immunotherapy

    Get PDF
    BackgroundGlioma is the most lethal and most aggressive brain cancer, and currently there is no effective treatment. Cancer immunotherapy is an advanced therapy by manipulating immune cells to attack cancer cells and it has been studied a lot in glioma treatment. Targeting the immune checkpoint CD47 or blocking the CD47-SIRPα axis can effectively eliminate glioma cancer cells but also brings side effects such as anemia. Glutaminyl-peptide cyclotransferase-like protein (QPCTL) catalyzes the pyroglutamylation of CD47 and is crucial for the binding between CD47 and SIRPα. Further study found that loss of intracellular QPCTL limits chemokine function and reshapes myeloid infiltration to augment tumor immunity. However, the role of QPCTL in glioma and the relationship between its expression and clinical outcomes remains unclear. Deciphering the role of QPCTL in glioma will provide a promising therapy for glioma cancer immunotherapy.MethodsQPCTL expression in glioma tissues and normal adjacent tissues was primarily analyzed in The Cancer Genome Atlas (TCGA) database, and further validated in another independent cohort from the Gene Expression Omnibus (GEO) database, Chinese Glioma Genome Atlas (CGGA), and Human Protein Atlas (HPA). The relationships between QPCTL expression and clinicopathologic parameters and overall survival (OS) were assessed using multivariate methods and Kaplan-Meier survival curves. And the proteins network with which QPCTL interacted was built using the online STRING website. Meanwhile, we use Tumor Immune Estimation Resource (TIMER) and Gene Expression Profiling Interactive Analysis (GEPIA) databases to investigate the relationships between QPCTL expression and infiltrated immune cells and their corresponding gene marker sets. We analyzed the Differentially Expressed Genes (DEGs) including GO/KEGG and Gene Set Enrichment Analysis (GSEA) based on QPCTL-high and -low expression tumors.ResultsIn contrast to normal tissue, QPCTL expression was higher in glioma tumor tissue (p ConclusionHigh QPCTL expression predicts high grades of gliomas and poor prognosis with impaired infiltration of adaptive immune cells in the tumor microenvironment as well as higher cancer stemness. Moreover, targeting QPCTL will be a promising immunotherapy in glioma cancer treatment.</p

    An Abaqus plugin for efficient damage initiation hotspot identification in large-scale composite structures with repeated features

    Get PDF
    Š 2021 Elsevier Ltd Identifying the hotspots for damage initiation in large-scale composite structure designs presents a significant challenge due to the high modelling cost. For most industrial applications, the finite element (FE) models are often coarsely meshed with shell elements and used to predict the global stiffness and internal loads. Because of the lack of detailed descriptions for the composite materials and 3D stress states, most of the established failure criteria are not applicable. In this work we present an Abaqus plugin tool which implements a framework to identify the hotspots by using a pre-computed database generated for specific, heavily-repeated feature types based on a given structural model. Developed with an object-oriented implementation in Python, this software is split into two main parts, specifically for feature generation and structural analysis. The pre-computed model presents a full 3D description for the considered feature and works as a submodel to the coarse structure model driven by a one-way transfer of the boundary conditions. The presented framework is an analysis tool for efficient sizing of large-scale composite structures, as it enables 3D damage analysis of the structures in critical zones with significant savings of the modelling and computational cost. The results are compared with conventional FE modelling and satisfactory agreement is observed. In addition, the software also enables the pre-computed database to be stored in an HDF5 data file for further reuse on new structures with the same feature

    The Redox‐Mediated Nickel–Metal Hydride Flow Battery

    Get PDF
    Each battery technology possesses intrinsic advantages and disadvantages, e.g., nickel–metal hydride (MH) batteries offer relatively high specific energy and power as well as safety, making them the power of choice for hybrid electric vehicles, whereas aqueous organic flow batteries (AORFBs) offer sustainability, simple replacement of their active materials and independent scalability of energy and power, making them very attractive for stationary energy storage. Herein, a new battery technology that merges the above mentioned battery technologies through the use of redox-mediated reactions is proposed that intrinsically possesses the main features of each separate technology, e.g., high energy density of the solid active materials, easy recyclability, and independent scalability of energy and power. To achieve this, Ni(OH)2 and MHs are confined in the positive and negative reservoirs of an AORFB that employs alkaline solutions of potassium ferrocyanide and a mixture of 2,6-dihydroxyanthraquinone and 7,8-dihydroxyphenazine-2-sulfonic acid as catholyte and anolyte, respectively. An energy density of 128 Wh L–1 is achieved based on the capacity of the reservoirs leaving ample room for improvement up to the theoretical limit of 378 Wh L–1. This new battery technology opens up new market opportunities never before envisaged, for redox flow batteries, e.g., domestic energy storage and heavy-duty vehicle transportation.Spanish Government through the Research Challenges Programme (Grant No. RTI2018-099228-A-I00). E.V. thanks the MINECO for the financial support (RYC2018-026086-I)

    Maleic anhydride-modified chicken ovalbumin as an effective and inexpensive anti-HIV microbicide candidate for prevention of HIV sexual transmission

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies have shown that 3-hydroxyphthalic anhydride (HP)-modified bovine milk protein, β-lactoglobulin (β-LG), is a promising microbicide candidate. However, concerns regarding the potential risk of prion contamination in bovine products and carcinogenic potential of phthalate derivatives were raised. Here we sought to replace bovine protein with an animal protein of non-bovine origin and substitute HP with another anhydride for the development of anti-HIV microbicide for preventing HIV sexual transmission.</p> <p>Results</p> <p>Maleic anhydride (ML), succinic anhydride (SU) and HP at different conditions and variable pH values were used for modification of proteins. All the anhydrate-modified globulin-like proteins showed potent anti-HIV activity, which is correlated with the percentage of modified lysine and arginine residues in the modified protein. We selected maleic anhydride-modified ovalbumin (ML-OVA) for further study because OVA is easier to obtain than β-LG, and ML is safer than HP. Furthermore, ML-OVA exhibited broad antiviral activities against HIV-1, HIV-2, SHIV and SIV. This modified protein has no or low <it>in vitro </it>cytotoxicity to human T cells and vaginal epithelial cells. It is resistant to trypsin hydrolysis, possibly because the lysine and arginine residues in OVA are modified by ML. Mechanism studies suggest that ML-OVA inhibits HIV-1 entry by targeting gp120 on HIV-1 virions and also the CD4 receptor on the host cells.</p> <p>Conclusion</p> <p>ML-OVA is a potent HIV fusion/entry inhibitor with the potential to be developed as an effective, safe and inexpensive anti-HIV microbicide.</p

    Facile Synthesis of Copper Nanoparticles in Glycerol at Room Temperature: Formation Mechanism

    Get PDF
    A copper sol is usually synthesized by the reduction of a copper precursor with a suitable reducing agent in the presence of a stabilizer. There are few reports regarding the preparation of copper nanoparticles in glycerol without using a stabilizing agent, but at elevated temperatures. The formation of reduced copper (Cu0) is usually verified by a UV-vis spectrophotometer where a ‘red copper sol’ was formed. In the present paper we synthesized the copper sol at room temperature in a glycerol medium using hydrazine as a reducing agent. The chemical states of copper in the sol and their composition were analyzed by X-ray absorption near edge structure spectroscopy (XANES) with the linear composition fitting method. A series-parallel mechanism of the reaction was proposed. An average particle size of 5 ± 1 nm was visualized via transmission electron microscopy (TEM)
    • …
    corecore